3.9.25 \(\int \frac {1}{x^8 \sqrt {a+b x^4}} \, dx\) [825]

Optimal. Leaf size=132 \[ -\frac {\sqrt {a+b x^4}}{7 a x^7}+\frac {5 b \sqrt {a+b x^4}}{21 a^2 x^3}+\frac {5 b^{7/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{42 a^{9/4} \sqrt {a+b x^4}} \]

[Out]

-1/7*(b*x^4+a)^(1/2)/a/x^7+5/21*b*(b*x^4+a)^(1/2)/a^2/x^3+5/42*b^(7/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1
/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1
/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(9/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {331, 226} \begin {gather*} \frac {5 b^{7/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{42 a^{9/4} \sqrt {a+b x^4}}+\frac {5 b \sqrt {a+b x^4}}{21 a^2 x^3}-\frac {\sqrt {a+b x^4}}{7 a x^7} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^8*Sqrt[a + b*x^4]),x]

[Out]

-1/7*Sqrt[a + b*x^4]/(a*x^7) + (5*b*Sqrt[a + b*x^4])/(21*a^2*x^3) + (5*b^(7/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a
 + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(42*a^(9/4)*Sqrt[a + b*x^4
])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{x^8 \sqrt {a+b x^4}} \, dx &=-\frac {\sqrt {a+b x^4}}{7 a x^7}-\frac {(5 b) \int \frac {1}{x^4 \sqrt {a+b x^4}} \, dx}{7 a}\\ &=-\frac {\sqrt {a+b x^4}}{7 a x^7}+\frac {5 b \sqrt {a+b x^4}}{21 a^2 x^3}+\frac {\left (5 b^2\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{21 a^2}\\ &=-\frac {\sqrt {a+b x^4}}{7 a x^7}+\frac {5 b \sqrt {a+b x^4}}{21 a^2 x^3}+\frac {5 b^{7/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{42 a^{9/4} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 51, normalized size = 0.39 \begin {gather*} -\frac {\sqrt {1+\frac {b x^4}{a}} \, _2F_1\left (-\frac {7}{4},\frac {1}{2};-\frac {3}{4};-\frac {b x^4}{a}\right )}{7 x^7 \sqrt {a+b x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^8*Sqrt[a + b*x^4]),x]

[Out]

-1/7*(Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[-7/4, 1/2, -3/4, -((b*x^4)/a)])/(x^7*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.16, size = 113, normalized size = 0.86

method result size
risch \(-\frac {\sqrt {b \,x^{4}+a}\, \left (-5 b \,x^{4}+3 a \right )}{21 a^{2} x^{7}}+\frac {5 b^{2} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a^{2} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\) \(105\)
default \(-\frac {\sqrt {b \,x^{4}+a}}{7 a \,x^{7}}+\frac {5 b \sqrt {b \,x^{4}+a}}{21 a^{2} x^{3}}+\frac {5 b^{2} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a^{2} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\) \(113\)
elliptic \(-\frac {\sqrt {b \,x^{4}+a}}{7 a \,x^{7}}+\frac {5 b \sqrt {b \,x^{4}+a}}{21 a^{2} x^{3}}+\frac {5 b^{2} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a^{2} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\) \(113\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^8/(b*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/7*(b*x^4+a)^(1/2)/a/x^7+5/21*b*(b*x^4+a)^(1/2)/a^2/x^3+5/21*b^2/a^2/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*
b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^4 + a)*x^8), x)

________________________________________________________________________________________

Fricas [A]
time = 0.09, size = 60, normalized size = 0.45 \begin {gather*} -\frac {5 \, \sqrt {a} b x^{7} \left (-\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - {\left (5 \, b x^{4} - 3 \, a\right )} \sqrt {b x^{4} + a}}{21 \, a^{2} x^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

-1/21*(5*sqrt(a)*b*x^7*(-b/a)^(3/4)*elliptic_f(arcsin(x*(-b/a)^(1/4)), -1) - (5*b*x^4 - 3*a)*sqrt(b*x^4 + a))/
(a^2*x^7)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.55, size = 44, normalized size = 0.33 \begin {gather*} \frac {\Gamma \left (- \frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {7}{4}, \frac {1}{2} \\ - \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} x^{7} \Gamma \left (- \frac {3}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**8/(b*x**4+a)**(1/2),x)

[Out]

gamma(-7/4)*hyper((-7/4, 1/2), (-3/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*x**7*gamma(-3/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^4 + a)*x^8), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{x^8\,\sqrt {b\,x^4+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^8*(a + b*x^4)^(1/2)),x)

[Out]

int(1/(x^8*(a + b*x^4)^(1/2)), x)

________________________________________________________________________________________